538 research outputs found

    Perception and recognition of computer-enhanced facial attributes and abstracted prototypes

    Get PDF
    The influence of the human facial image was surveyed and the nature of its many interpretations were examined. The role of distinctiveness was considered particularly relevant as it accounted for many of the impressions of character and identity ascribed to individuals. The notion of structural differences with respect to some selective essence of normality is especially important as it allows a wide range of complex facial types to be considered and understood in an objective manner. A software tool was developed which permitted the manipulation of facial images. Quantitative distortions of digital images were examined using perceptual and recognition memory paradigms. Seven experiments investigated the role of distinctiveness in memory for faces using synthesised caricatures. The results showed that caricatures, both photographic and line-drawing, improved recognition speed and accuracy, indicating that both veridical and distinctiveness information are coded for familiar faces in long-term memory. The impact of feature metrics on perceptual estimates of facial age was examined using 'age-caricatured' images and were found to be in relative accordance with the 'intended' computed age. Further modifying the semantics permitted the differences between individual faces to be visualised in terms of facial structure and skin texture patterns. Transformations of identity between two, or more, faces established the necessary matrices which can offer an understanding of facial expression in a categorical manner and the inherent interactions. A procedural extension allowed generation of composite images in which all features are perfectly aligned. Prototypical facial types specified in this manner enabled high-level manipulations to be made of gender and attractiveness; two experiments corroborated previously speculative material and thus gave credence to the prototype model. In summary, psychological assessment of computer-manipulated facial images demonstrated the validity of the objective techniques and highlighted particular parameters which contribute to our perception and recognition of the individual and of underlying facial types

    The postcranial skeleton of monolophosaurus jiangi (dinosauria: Theropoda) from the Middle Jurassic of Xinjiang, China, and a review of Middle Jurassic Chinese theropods

    Get PDF
    The Middle Jurassic was a critical time in the evolution of theropod dinosaurs, highlighted by the origination and radiation of the large-bodied and morphologically diverse Tetanurae. Middle Jurassic tetanurans are rare but have been described from Europe, South America and China. In particular, China has yielded a number of potential basal tetanurans, but these have received little detailed treatment in the literature. Here we redescribe the postcranial skeleton of one of the most complete Chinese Middle Jurassic theropods, Monolophosaurus. Several features confirmthe tetanuran affinities of Monolophosaurus, but the possession of ‘primitive’ traits such as a double-faceted pubic peduncle of the ilium and a hood-like supracetabular crest suggest a basal position within Tetanurae. This conflicts with most published cladistic analyses that place Monolophosaurus in a more derived position within Allosauroidea.We review the Middle Jurassic record of Chinese theropods and compare Monolophosaurus to other Middle Jurassic theropods globally. These comparisons suggest that Monolophosaurus and Chuandongocoelurus formed an endemic theropod clade limited to the Middle Jurassic of Asia. Other Middle Jurassic Chinese theropods deserve further study

    The Role of Legal Services in the Antipoverty Program

    Get PDF
    Large-scale adaptive radiations might explain the runaway success of a minority of extant vertebrate clades. This hypothesis predicts, among other things, rapid rates of morphological evolution during the early history of major groups, as lineages invade disparate ecological niches. However, few studies of adaptive radiation have included deep time data, so the links between extant diversity and major extinct radiations are unclear. The intensively studied Mesozoic dinosaur record provides a model system for such investigation, representing an ecologically diverse group that dominated terrestrial ecosystems for 170 million years. Furthermore, with 10,000 species, extant dinosaurs (birds) are the most speciose living tetrapod clade. We assembled composite trees of 614-622 Mesozoic dinosaurs/birds, and a comprehensive body mass dataset using the scaling relationship of limb bone robustness. Maximum-likelihood modelling and the node height test reveal rapid evolutionary rates and a predominance of rapid shifts among size classes in early (Triassic) dinosaurs. This indicates an early burst niche-filling pattern and contrasts with previous studies that favoured gradualistic rates. Subsequently, rates declined in most lineages, which rarely exploited new ecological niches. However, feathered maniraptoran dinosaurs (including Mesozoic birds) sustained rapid evolution from at least the Middle Jurassic, suggesting that these taxa evaded the effects of niche saturation. This indicates that a long evolutionary history of continuing ecological innovation paved the way for a second great radiation of dinosaurs, in birds. We therefore demonstrate links between the predominantly extinct deep time adaptive radiation of non-avian dinosaurs and the phenomenal diversification of birds, via continuing rapid rates of evolution along the phylogenetic stem lineage. This raises the possibility that the uneven distribution of biodiversity results not just from large-scale extrapolation of the process of adaptive radiation in a few extant clades, but also from the maintenance of evolvability on vast time scales across the history of life, in key lineages

    Varied effects of algal symbionts on transcription factor NF-κB in a sea anemone and a coral: possible roles in symbiosis and thermotolerance

    Full text link
    Many cnidarians, including the reef-building corals, undergo symbiotic mutualisms with photosynthetic dinoflagellate algae of the family Symbiodiniaceae. These partnerships are sensitive to temperature extremes, which cause symbiont loss and increased coral mortality. Previous studies have implicated host immunity and specifically immunity transcription factor NF-κB as having a role in the maintenance of the cnidarian-algal symbiosis. Here we have further investigated a possible role for NF-κB in establishment and loss of symbiosis in various strains of the anemone Exaiptasia (Aiptasia) and in the coral Pocillopora damicornis. Our results show that NF-κB expression is reduced in Aiptasia larvae and adults that host certain algae strains. Treatment of Aiptasia larvae with a known symbiosis-promoting cytokine, transforming growth factor β, also led to decreased NF-κB expression. We also show that aposymbiotic Aiptasia (with high NF-κB expression) have increased survival following infection with the pathogenic bacterium Serratia marcescens as compared to symbiotic Aiptasia (low NF-κB expression). Furthermore, a P. damicornis coral colony hosting Durusdinium spp. (formerly clade D) symbionts had higher basal NF-κB expression and decreased heat-induced bleaching as compared to two individuals hosting Cladocopium spp. (formerly clade C) symbionts. Lastly, genome-wide gene expression profiling and genomic promoter analysis identified putative NF-κB target genes that may be involved in thermal bleaching, symbiont maintenance, and/or immune protection in P. damicornis. Our results provide further support for the hypothesis that modulation of NF-κB and immunity plays a role in some, but perhaps not all, cnidarian-Symbiodiniaceae partnerships as well as in resistance to pathogens and bleaching.Accepted manuscrip

    A temperate palaeodiversity peak in Mesozoic dinosaurs and evidence for Late Cretaceous geographical partitioning

    Get PDF
    Aim  Modern biodiversity peaks in the tropics and declines poleward, a pattern that is potentially driven by climate. Although this latitudinal biodiversity gradient (LBG) also characterizes the marine invertebrate fossil record, distributions of ancient terrestrial faunas are poorly understood. This study utilizes data on the dinosaur fossil record to examine spatial patterns in terrestrial biodiversity throughout the Mesozoic.\ud Location  We compiled data on fossil occurrences across the globe.\ud Methods  We compiled a comprehensive dataset of Mesozoic dinosaur genera (738), including birds. Following the utilization of sampling standardization techniques to mediate for the uneven sampling of the fossil record, we constructed latitudinal patterns of biodiversity from this dataset.\ud Results  The dominant group of Mesozoic terrestrial vertebrates did not conform to the modern LBG. Instead, dinosaur diversity was highest at temperate palaeolatitudes throughout the 160 million year span of dinosaurian evolutionary history. Latitudinal diversity correlates strongly with the distribution of land area. Late Cretaceous sauropods and ornithischians exhibit disparate LBGs.\ud Main conclusions  The continuity of the palaeotemperate peak in dinosaur diversity indicates a diminished role for climate on the Mesozoic LBG; instead, dinosaur diversity may have been driven by the amount of land area among latitudinal belts. There is no evidence that the tropics acted as a cradle for dinosaur diversity. Geographical partitioning among major clades of herbivorous dinosaurs in the Late Cretaceous may result from the advanced stages of continental fragmentation and/or differing responses to increasing latitudinal climatic zonation. Our results suggest that the modern-day LBG on land was only established 30 million years ago, following a significant post-Eocene recalibration, potentially related to increased seasonality

    Change in the size of Walker Lake during the past 5000 years

    Full text link
    In 1984, a 12-m sediment core (WLC84-8) was taken from the deepest part of Walker Lake. Samples of the core were analysed for diatoms, pollen, carbonate mineralogy, magnesium content, [delta]18O and [delta]13C values of the total inorganic fractin, [delta]18O and [delta]13C values of Limnocythere ceriotuberosa, [delta]13C values of the total organic fraction, grain size, and magnetic susceptibility. The data indicate that Walker Lake became shallow and probably desiccated between [ges]5300-4800 and 2700-2100 yr B.P.. Each of the organic and inorganic proxy indicators of lake size discussed in this paper was useful in determining the presence of the shallow-lake intervals. However, none of the indicators was useful in determining the cause of the shallow-lake intervals. Instead, the types of fish living in Walker Lake prior to 1940 were used to demonstrate that shallow-lake intervals resulted from diversion of the Walker River and not from climatic aridity. Major changes in mineralogy and magnesium content of carbonates and major changes in diatom populations with time were found to be a function of the chemical evolution of Walker Lake combined with changing lake size. The stable isotopes of oxygen and carbon were found to be good indicators of lake volume changes. A lake-level record for Walker Lake constructed from stable-isotope data was found to be similar to a lake-level record constructed using tufa and tree-stump data. Both records indicate relatively high lake levels between 4800-2700 yr B.P., at 1250 yr B.P., and within the last 300 yr. Substantial declines in lake level occurred ~2000 and ~1000 yr B.P.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29575/1/0000663.pd

    Development and evaluation of a patient decision aid for young people and parents considering fixed orthodontic appliances

    Get PDF
    OBJECTIVES: To develop and evaluate a child-centred patient decision aid for young people, and their parents, supporting shared decision making about fixed orthodontic appliance treatment with dental health professionals, namely the Fixed Appliance Decision Aid (FADA). METHODS: The studies were undertaken in a UK teaching dental hospital orthodontic department in 2013-2014. The development phase involved an interview study with: (a) 10 patients (12-16 years old), and their parents, receiving orthodontic care to investigate treatment decision making and inform the content of the FADA and (b) 23 stakeholders critiquing the draft decision aid's content, structure and utility. The evaluation phase employed a pre-/post-test study design, with 30 patients (12-16 years old) and 30 parents. Outcomes included the Decisional Conflict Scale; measures of orthodontic treatment expectations and knowledge. RESULTS: Qualitative analysis identified two informational needs: effectiveness of treatment on orthodontic outcomes and treatment consequences for patients' lives. Quantitative analysis found decisional conflict reduced in both patients (mean difference -12.3, SD 15.3, 95% CI 6.6-17.9; p < 0.001) and parents (mean difference - 8.6, SD 16.6, 95% CI 2.5-14.8; p = 0.002); knowledge about duration and frequency of orthodontic treatment increased; expectations about care were unchanged. CONCLUSIONS: Using the FADA may enable dental professionals to support patients and their parents, decisions about fixed appliance treatments more effectively, ensuring young people's preferences are integrated into care planning

    The apparent exponential radiation of Phanerozoic land vertebrates is an artefact of spatial sampling biases

    Get PDF
    There is no consensus about how terrestrial biodiversity was assembled through deep time, and in particular whether it has risen exponentially over the Phanerozoic. Using a database of 60 859 fossil occurrences, we show that the spatial extent of the worldwide terrestrial tetrapod fossil record itself expands exponentially through the Phanerozoic. Changes in spatial sampling explain up to 67% of the change in known fossil species counts, and these changes are decoupled from variation in habitable land area that existed through time. Spatial sampling therefore represents a real and profound sampling bias that cannot be explained as redundancy. To address this bias, we estimate terrestrial tetrapod diversity for palaeogeographical regions of approximately equal size. We find that regional-scale diversity was constrained over timespans of tens to hundreds of millions of years, and similar patterns are recovered for major subgroups, such as dinosaurs, mammals and squamates. Although the Cretaceous/Palaeogene mass extinction catalysed an abrupt two- to three-fold increase in regional diversity 66 million years ago, no further increases occurred, and recent levels of regional diversity do not exceed those of the Palaeogene. These results parallel those recovered in analyses of local community-level richness. Taken together, our findings strongly contradict past studies that suggested unbounded diversity increases at local and regional scales over the last 100 million years

    Dense Cores in Dark Clouds. XIV. N2H+(1-0) maps of dense cloud cores

    Get PDF
    We present results of an extensive mapping survey of N2H+(1-0) in about 60 low mass cloud cores already mapped in the NH3(1,1) inversion transition line. The survey has been carried out at the FCRAO antenna with an angular resolution about 1.5 times finer than the previous ammonia observations. Cores with stars typically have map sizes about a factor of two smaller for N2H+ than for NH3, indicating the presence of denser and more centrally concentrated gas compared to starless cores. Significant correlations are found between NH3 and N2H+ column densities and excitation temperatures in starless cores, but not in cores with stars, suggesting a different chemical evolution of the two species. Velocity gradients range between 0.5 and 6 km/s/pc, similar to what has been found with NH3 data. ``Local'' velocity gradients show significant variation in both magnitude and direction, suggesting the presence of complexmotions not interpretable as simple solid body rotation. Integrated intensity profiles of starless cores present a ``central flattening'' and are consistent with a spherically symmetric density law n ~ r^{-1.2} for r < ~0.03 pc and n ~ r^{-2} at larger r. Cores with stars are better modelled with single density power laws with n ~ r^{-2}. Line widths change across the core but we did not find a general trend. The deviation in line width correlates with the mean line width, suggesting that the line of sight contains ~ 10 coherence lengths. The corresponding value of the coherence length, ~ 0.01 pc, is similar to the expected cutoff wavelength for MHD waves. This similarity may account for the increased ``coherence'' of line widths on small scales. Despite of the finer angular resolution, the majority of N2H+ and NH3 maps show a similar ``simple'' structure, with single peaks and no elongation.Comment: 62 pages, 11 figures, ApJ, in pres
    corecore